
A direct electrifying algorithm for backbone identification

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 14679

(http://iopscience.iop.org/1751-8121/40/49/004)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/49
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 14679–14686 doi:10.1088/1751-8113/40/49/004

A direct electrifying algorithm for backbone
identification

Chunyu Li and Tsu-Wei Chou

Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA

E-mail: chou@udel.edu

Received 10 July 2007, in final form 10 October 2007
Published 21 November 2007
Online at stacks.iop.org/JPhysA/40/14679

Abstract
This paper proposes a new algorithm for identifying backbones in the
application of percolation theory. This algorithm is based on the current-
carrying definition of backbone and is carried out on the predetermined
spanning cluster. It is fairly easy to implement and further parallelize. The
efficiency is enhanced by the fact that the conductivity of a percolating system
can be obtained in the same processing of backbone identification. The critical
exponents of backbone mass, red bonds (sites) and conductivity obtained by
this algorithm are in very good agreement with the existing results.

PACS numbers: 64.60.Ak, 05.10.−a, 05.70.Jk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The percolation theory has found applications in a wide variety of fields, such as materials
science (polymers, concrete, composites and porous media) [1–4], geophysics (oil exploitation,
geothermal power, groundwater pollution and earthquake prediction) [5], information
technology (Internet [6], wireless communications [7]), sociophysics (social hierarchies,
political persuasion and marketing) [8] and medical or biological studies (epidemics [9],
species evolution [7]). Except for some very simple regular bond or site percolation problems
which can be examined by analytical methods, the most complex percolating systems have to
be simulated by the Monte Carlo (MC) method.

There are two main tasks in the MC simulations, which are of fundamental importance.
One is to find the spanning cluster and the other is to identify the backbone. The
Hoshen–Kopelman cluster labeling algorithm [11] along with its modifications [12] is most
popular for finding the spanning cluster, though the Newman–Ziff algorithm [13] seems to be
more efficient. The parallel implementations of the Hoshen–Kopelman algorithm have also
been designed for large-scale MC simulations [14, 15]. In contrast, backbone identification is
still a bottleneck in the simulation of large-scale percolation systems.
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The backbone is a subset of the spanning cluster and essentially the biconnected nodes in
computer science. It plays a fundamental role in any transport process in percolating systems.
Tarjan’s recursive depth-first-search (DFS) algorithm [16] is well known and most used for
backbone identification. The burning algorithm [17] and the dual lattice algorithm [18] are
much slower than Tarjan’s and not easy to implement. The matching algorithm [19] is faster
than the burning algorithm, but slightly slower than Tarjan’s and also not easy to implement.
The hull-generating algorithm [20, 21], which is twice as fast as Tarjan’s, is also a depth-
first-search algorithm but only suitable for strictly planar graphs. The fastest algorithm (four
times as fast as Tarjan’s) so far was proposed by Yin and Tao [22] based on the modified
Hoshen–Kopelman algorithm. But its application is limited to two-dimensional graphs with
open lateral boundary conditions, while the burning, matching and Tarjan’s algorithms can be
used for arbitrary graphs. Up to date, Tarjan’s recursive DFS algorithm [16] seems to be the
fastest algorithm for the general use of backbone identification. However, the intensive use of
the stack is the major drawback of this algorithm. When dealing with a large system, the high
number of consecutive recursive calls issued by this algorithm often causes a stack overflow
[23]. Thus, the limitation of the recursive algorithm is obvious and its parallel implementation
seems to be rather difficult [24].

In this paper, we propose an effective method, termed as a direct electrifying algorithm, for
backbone identification by directly employing the definition of backbone which Kirkpatrick
[25] described as the current-carrying part of a resistor network. There has been no report
on identifying the backbone directly from its current-carrying definition. The effectiveness of
this algorithm is demonstrated by a two-dimensional square lattice site and bond percolation
problems. Its main advantage is in overcoming the drawback of recursive algorithms.

2. Direct electrifying method

Let us first consider the site percolation on a square lattice of size L × L. Our algorithm for
backbone identification requires three steps. The first step consists of randomly generating
occupied sites based on a given probability p and determining if a spanning cluster has formed.
The Hoshen–Kopelman algorithm is used for the identification of spanning clusters. Different
from the traditional assumption of ‘bus bar’ geometry in which the two opposite sides of a
lattice are entirely connected to superconducting electrodes, we only assume that the sites on
two opposite sides are individually connected to superconductors. With this modification, the
number of dangling arcs connected with the spanning cluster would be significantly reduced.
The other two sides are assumed to be open as usual. The output of the first step includes the
information of sites on the spanning cluster and the connectivity between these sites.

The second step is to calculate the electric current flowing through the spanning cluster.
We assume that the connection between any pair of two neighboring sites on the spanning
cluster represents a resistor with unit resistance (figure 1(a)). A voltage is applied to the
superconducting electrodes by assuming the electric potential to be 0 at the bottom and 1 at the
top. The voltage distribution at each site of the spanning cluster can be solved by establishing
a system of algebraic equations based on the finite element method [26].

For a typical resistor element i–j (figure 1(b)), the elemental matrix representing the
relation between the current (I) entering the element at the ends and the end potential (V) is

{
I e
i

I e
j

}
= [

Ke
ij

] {
Vi

Vj

}
= 1

Re

[
1 −1

−1 1

]{
Vi

Vj

}
. (1)
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Figure 1. (a) Resistor network, (b) an isolated resistor element.

According to Kirchhoff’s current law, a system of algebraic equations can be assembled for
the entire spanning cluster:

I = KV, (2)

where V = {V1, V2, . . . , Vn}T stands for the nodal potentials at n sites belonging to the
spanning cluster, I = {I1, I2, . . . , In}T is the vector of external input current at the n sites (here
I = 0, because we are not inputting any current at any site into the spanning cluster) and the
global coefficient matrix

K =
m∑

e=1

[
Ke

ij

]
, (3)

where m is the number of resistor elements.
After applying the voltage boundary conditions to equation (2), the electric potentials at

each site of the spanning cluster can be obtained. The current flowing through each resistor
element can then be determined by

I e = (Vi − Vj )/R
e. (4)

The final step is to extract the backbone from the spanning cluster based on the current-carrying
definition. If the current in a resistor element is nonzero, it means that this resistor is carrying
current and its two ends must belong to the backbone. The backbone can be identified after all
the resistors in the spanning cluster are scanned. As shown in figure 2, all of the dangling ends,
loops and arcs carry no current. For bond percolation problems, the procedure for backbone
identification is roughly the same as described above for site percolation.
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Figure 2. An example of identified backbone (text: electric current value, positive directions are
↓ and ←; Color: red—red bonds, yellow—blobs, blue—dangling bonds; dash line: section for
determining the total current).

It should be pointed out that the backbone extracted based on the above algorithm would
actually be the effective backbone [26]. Some so-called perfectly balanced bonds (PBBs),
which carry no current as a result of the voltages on their ends being equal, belong to the
geometrical backbone. Although the PBBs are often single bonds, sometimes they can be
multiple bonds. If the finding of the geometrical backbone is the objective, then a small
change should be made to the algorithm described above. Batrouni et al [27] once made a
systematic study on the density of perfectly balanced bonds in the geometrical backbone by
using a method of noisy resistors. We adopt the same tactic in our algorithm.

For finding out the geometrical backbone, we only need to add small random noisy
resistances (uniformly distributed between −0.001 and 0.001) to the resistors Re (unit
resistance) in the elemental matrix

[
Ke

ij

]
shown in equation (1). Then the PBBs will also have

a current in addition to the effective backbone. Thus, based on the ‘nonzero-current’ criterion,
the entire geometrical backbone can be accurately identified. The choice to use uniform unity
resistances or noisy resistances depends on the objective of simulations. Usually, the backbone
identification is for calculating transport properties. The PBBs are not really important under
such circumstances. If so, then the algorithm without noisy resistances is accurate enough.
If the geometrical backbone is the real objective, then the algorithm with noisy resistances
should be used.

3. Conductivity calculation

The backbone is relevant to transport properties. Its structure consists of red bonds and blobs.
The critical exponent of the backbone represents the scaling relationship of backbone mass
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Figure 3. Log–log plot of sites or bonds in a backbone versus lattice size (PBB: perfectly balanced
bonds).

with the systems size. The exact value of the critical exponent is not known, but a current
numerical estimate is 1.6432 for 2D percolations [29]. The identification of the backbone
enables us to calculate the scaling exponents of backbone mass and red sites or red bonds.
The backbone mass represents the total number of sites or bonds in a geometrical backbone,
which is extracted by using the noisy resistance method (actually, the uniform unity resistance
method gives the same results because the PBBs have almost no effect on the average mass
due to their very small percentage). The red bonds or red sites are figured out by using the
uniform unity resistance method. The exponents DB and DR are defined by the relationship
between the mass MB , the number of red sites (bonds) NR and the lattice size L as

MB ∼ LDB , NR ∼ LDR . (5)

The direct method to determine the scaling exponents involves plotting the mass versus the
lattice size in log–log scale and then determining the slope of the linear fitting line. We use
lattice sizes ranging from 8 × 8 to 500 × 500. MC simulations are carried out 1000 times
for each size. The percolation thresholds are taken as pc = 0.592 746 for site percolation and
pc = 0.5 for bond percolation. Figure 3 shows the average backbone mass variation with the
lattice size. The slopes of the log–log lines give DB = 1.646 ± 0.002 for site percolation and
DB = 1.642 ± 0.002 for bond percolation. This result is in very good agreement with the most
extensive simulation performed by Grassberger [30], who gave DB = 1.6432 ± 0.0008 for
both site and bond percolations. The exponent DR = 0.750 ± 0.005 for site percolation and
DR = 0.749 ± 0.006 for bond percolation are also in excellent agreement with the exact value
1/ν = 3/4 given by Conniglio [31]. The number of PBBs in the backbone is proportional
to the backbone mass at a percentage of (0.156 ± 0.002)% for bond percolation, which is
in very good agreement with (0.159 ± 0.004)% given by Batrouni et al [26]. We also find
that the number of PBBs is (0.342 ± 0.002)% of the backbone mass for site percolation,
which has not been reported before, if we assume that there is a bond between a pair of
neighboring sites.

We also obtain the results of conductivity for site and bond percolations in the same
procedure of backbone identification. The total electric current is first calculated by summing
up the currents of backbone bonds that cross a selectively prepositioned line (shown in figure 2)
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Figure 4. The conductivity of percolating systems and its critical exponent.

paralleling to the electrode border. The effective resistance of the percolating system is then
given by

Reff = (Vtop − Vbottom)/Itotal, (6)

and the conductance Geff is just the reciprocal of the effective resistance

Geff = 1/Reff . (7)

Because of the fact that the lattice sizes in the two directions are the same and the thickness
of the lattice can be assumed to be unity, the conductivity σ is thus equal to the effective
conductance. This is a very efficient and universal method to compute the conductivity,
compared with the algorithm of Lobb and Frank [32]. Figures 4(a) and (b) show the
dependence of conductivity on the lattice size. The almost straight log–log lines prove
the scaling relationship between the conductivity and the lattice size, i.e. σ ∼ L−Dσ . In fact,
the exponent gradually decreases with an increasing lattice size (figures 4(c) and (d)). The
scaling exponent in figure 4 is calculated by using different numbers of data points. With an
increasing size, the available data of conductivity increase. For a given size system, the scaling
exponent is calculated using all available data produced before. It is obvious that a larger size
gives a more accurate exponent, though with some fluctuations. The exponent Dσ can be
linearly extrapolated to 0.988 for site percolation and 0.986 for bond percolation, which is in
very good agreement with the 0.9826 of Grassberger [30] and 0.9745 of Normand et al [33].
The conductivity exponent for 2D percolation is thus νDσ = 4

3Dσ =1.315–1.317, which is in
excellent agreement with theoretical and experimental results [30, 34].
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4. Discussions

The present algorithm has been tested in our MC simulations for both site and bond percolation
problems and has demonstrated superb accuracy. The advantage is in the simplicity of
the present algorithm, which is essentially a one-dimensional FEM. The implementation is
fairly straightforward and the know-how accumulated in the studies of the FEM is readily
transferable. For example, the parallel implementation of the FEM has been explored
for decades and many effective algorithms have been successfully developed [28]. Thus,
researchers interested in the algorithm proposed in this paper can readily take the advantage
of parallel computing for FEM.

For general graphs, the popular algorithm for identifying backbone seems to be Tarjan’s
depth-first-search algorithm, which has a time complexity O(N) for a graph of N nodes. But
its main drawback is the recursion. Dealing with a large system may cause a computer stack
overflow. The present algorithm for backbone identification has the advantage in overcoming
the drawback of recursive algorithms. Its time complexity depends on the method used for
solving the system of linear equations. For small or medium systems, the direct methods are
usually used and have time complexity around O(N3). Thus, for small or medium systems,
the present algorithm seems to be not competitive. But for large systems, iterative methods
are more suitable and the time complexity of some iterative methods is believed to in be in
the order of O(log N)–O(N) [35]. Thus the present algorithm is attractive for large systems,
especially its implementation in parallel computers because of its non-recursive feature. For
demonstrating the feasibility, we only simulated 500 × 500 site and bond systems. But
theoretically, there is no size limitation in the present algorithm. Further studies, such as the
calculation time compared with other backbone identification methods, the implementation
on parallel computers, the optimal solver for the system of linear equations, etc., are necessary
for fully taking advantage of the power of the present algorithm.

5. Conclusion

In summary, a straightforward algorithm for backbone identification is proposed in this paper.
The algorithm is based on the current-carrying definition of backbone and is carried out on
the predetermined spanning cluster. The conductivity of the percolating system can also be
obtained in the same processing of backbone identification. The Monte Carlo simulations on
site and bond percolation problems based upon this algorithm indicate that it is very effective.
The parallel implementation of the present algorithm can be easily realized if necessary. It is
expected that the present algorithm will overcome the drawback of recursive algorithms and
greatly expand the limit on the simulation size of percolating systems.
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